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Abstract--The parametric approach to the specification of geometric form is particularly well suited to the needs 
of structural geologists. This note illustrates its application to ellipses and ellipsoids which may represent stress, 
strain, or other rank-2 tensor phenomena in rocks. Compared to traditional functional expressions, parametric 
equations are simpler, faster to compute, and more meaningful in terms of physical parameters. 

INTRODUCTION PARAMETRIC EQUATIONS 

ELLIPSES and ellipsoids are fundamental to the geo- 
metric description of geological deformation. The im- 
plicit equation for an ellipse with semi-axes a and b 
parallel to x and y reference axes is 

However ,  when the axes are oblique to the reference 
directions, the equation becomes unwieldy, 

(c 2 + e2)x 2 + 2 ( c a  + e . f )xy  + (d 2 + f2)y2 = 1, (2) 

where c, d, e, and f are inverse transformation para- 
meters determining the ellipse's shape and orientation 
(e.g. Twiss & Moores 1992, p. 294). It is possible to 
specify the deformation state using a forward transform- 
ation tensor, D, but it is difficult to get any feel for the  
significance of the numbers involved, except in a special 
case such as simple shear, 

D = I 
1 0 Yl 
0 1 0 
0 0 1  

and even that becomes obscure when the shear plane or 
shear direction are oblique to the reference axes. The 
purpose of this note is to present a remarkably simple 
parametric approach to the specification of stress, strain, 
fabric, and object ellipses and ellipsoids in a general 
reference frame. 

L i n e s  

Readers  will be familiar with the explicit equation of a 
straight line 

y = m x  + c (4) 

(1) where (x, y) are abscissa and ordinate, m is the slope, 
and c is the y-axis intercept. This equation expresses the 
dependent variable y as a function of the independent 
variable x. It is not very convenient when the problem is 
to connect two given points, 

Pl = ( x l , Y l )  (5) 

P2 = (XE,Y2), (6) 

and it breaks down when the slope is vertical. An 
implicit function such as the equation of a unit circle, 

x 2 + y2 = 1 (7) 

must be converted to explicit form in practice, 

y = ~ (8) 

and the problem of vertical slope recurs. The parametric 
equation of a straight line joining two points Pl and P2 is 

(3) P = spl +/P2, (9) 

where s : t  is a proportional division of the line such that 

s + t = 1. (10) 

For example, if s is set to 30% and t to 70% then the 
point 

p -- 0.3 Pl + 0.7 P2 (11) 

lies on the line. You could think of point p as being 
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Fig. I. Parametric representation of an ellipse. P1 and P2 are the 
given radii. (a) P1 and P2 are orthogonal and form the axes of the 
ellipse. (b) P1 and P2 are non-orthogonal.  P2 is parallel to the ellipse's 

tangent at the tip of P1 and vice versa. 

"composed of" 30% of the co-ordinates of Pl and 70% of 
the co-ordinates of P2- If t < 0 or t > I then the point is on 
the line but external to the segment joining Pl to P2- The 
point 

p = 0.5 Pl + 0 .4  P2 (12) 

is not on the line, however, because s and t do not sum to 
unity in this case. Each cartesian co-ordinate may be 
substituted for p to form simultaneous equations, 

X = SX 1 + tX 2 (13) 

y ---- Sy l  + ty2. (14) 

Although two parameters, s and t are used in this paper 
for the sake of presentation, there is only one indepen- 
dent parameter because of equation (10). For a conven- 
tional treatment of parametric equations in one 
parameter see, for example Foley et  al .  (1990). The 
parameters may be thought of as time and time remain- 
ing, for example; if one is watching a line being drawn, 
then the pen is at a definable point at each instant in 
time, even if the line's slope is vertical. The equation 
holds equally in two or three dimensions, 

X : SX  1 ÷ tx  2 (15) 

y = Syl  + ty2 (16) 

Z = SZl + tZ2. (17) 

It is important to note the values of s and t are common. 
The complete line can be drawn at any desired level of 
resolution by repeating equation (9) for sufficiently 
small increments of t (e.g. t = 0.001, 0.002, 0.003, etc.). 

E l l i p s e s  

A similar approach may be taken to the construction 
of an ellipse centered at the origin, given two radius 
vectors Pt and P2: 

p = V~p, + V'-tp2, (18) 

where t is confined to the range [0,1]. Remember that s is 
simply l-t, not to be confused with an ellipse axis. If Pl 
and P2 are perpendicular then they define the semi-axes 
of the ellipse (Fig. la)---otherwise they are a special pair 
of radii such that Pl is parallel to the tangent at the tip of 
P2 and vice versa (Fig. lb). Each combination of signs 
+V'-s and + V t  gives one quadrant of the ellipse. If the 

ellipse is centered at a point P0, other than the origin, its 
equation is simply 

p = Vspt + V'-tp2 + Po. (19) 

Note that equal increments of t do not yield equal arc 
lengths of the ellipse; rather, points are closer in regions 
of higher curvature, which is efficient for computerized 
drafting. Equation (19) compares favorably with 
equation (2), not only because there are fewer terms, 
but also because the shape and orientation of the ellipse 
can be visualized from the values in vectors Pl and P2. 
Furthermore, if the ellipse is deformed such that the 
center moves from P0 to p~ whilst vector Pl transforms to 
p~ and P2 to p~, then the deformed ellipse is given by 

p' = ~ p ~  + Vr-tp~ + p~. (20) 

which is a remarkable simplification for the basic 
equations of Rf@ and Fry analysis (e.g. Marshak & 
Mitra 1988, p. 352). Note that p~ and p~ are not the 
semi-axes of the deformed ellipse unless except in 
special cases. Square roots are not quick to calculate on a 
microcomputer, but their values may be pre-processed 
and stored in look-up tables. Speed is not a concern for 
most applications but becomes significant when simulat- 
ing deformation in real time, as in the author's "Strain 
Grid" program, which redraws 100 deformed ellipses 
while the computer's mouse is in motion. Conventional 
calculation using equation (2) would be too slow in this 
case. 

P l a n e s  a n d  e l l i p s o i d s  

The equation of a plane is given by 

p = rP 1 + sp2 +/P3, (21) 

where r, s, and t sum to unity. Thus the point p lies on the 
plane if 

r : s : t  -- 20%:50% :30%, (22) 

for example, but the point (0.4 Pl, 0.4 P2, 0.4 P3) does 
not because the parameter sum is 1.2 

Similarly, the equation of an ellipsoid, given three 
radii Pl, P2, and P3, may be written 

P = V'- rpl  + %/sp2 + V'-tp3 + Po. (23) 

(if off-origin, P0 denotes the center). The eight combi- 
nations of signs of +Vrr, +Vs,  and + V t  give the eight 
octants of the ellipsoid. This equation is short for three 
simultaneous co-ordinate equations 

X = V r x  I ÷ ~Vsx 2 ÷ V t x  3 ÷ x 0 (24) 

Y = Vrryl + Vsy2 + N/ty3 + Y0 (25) 

z = V~rzl + ~ z 2  + ~/tz3 + z0. (26) 

Here we see how powerful and succinct the parametric 
approach is when compared with the explicit functional 
or tensor transformation approach. 
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Fig. 2. Parametric equations define the three principal sections of an 
ellipsoid in a very simple formulation (see text). 

Project ion o f  ellipsoids 

To convey a meaningful impression of stress or strain 
parameters,  it is necessary to present data graphically, 
which requires a projected view in three dimensions. 
Again, the parametric approach is astonishingly simple. 
We are given the origin P0 and the unit vectors x, y and z 
in the co-ordinate directions. For  example, let the origin 
be at P0 = (0,0,0) and let the unit vectors project onto 
the plane of the diagram at 

[10] [0] r02,  
x = ; y = ; z = [-0.125]" 

Then the equations of the three principal elliptical 
sections of the ellipsoid projected onto the xy-plane are 

p = %/~ix + V~Iy (28) 

p = Vs-szy + ~¢~2z (29) 

p = V'~3z + V~3x. (30) 

(Fig. 2). Note that x, y, and z are vectors with projec ted  
co-ordinates as shown in equation (27). Equations (28)- 
(30) thus stand for six equations, two for the plane co- 
ordinates of each ellipse. 

CONCLUSIONS 

Parametric representation of geometric form is ideally 
suited to geological applications where curves com- 
monly have locally infinite slopes. The parametric form 
of an ellipse and ellipsoid presented in this note is 
dramatically simpler than any other  type of represen- 
tation, especially when the ellipse or ellipsoid is off 
origin and oriented oblique to some or all reference 
axes. The method is particularly elegant when three- 
dimensional results are projected onto the plane for 
graphical presentation. The method has already been 
applied to stress and strain analysis in De Paor (1990) 
and has further applications to forms other than ellipses 
and ellipsoids. For example, 

p = s"pt  + tnp2 • (31) 

is identical to equation (18) when n = 0.5 but describes 
sub- and super-ellipse shapes (Gardner  1965, Lisle 1981, 
De Paor 1988) when 0 < n < 1. It is also the basis for the 
mathematical manipulation of B6zier polynomials 
which have wide-ranging implications for structural 
modelling (work in progress). 
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